The surprising unpredictability of language in use

This morning I recieved an e-mail from an international professional association that I belong to. The e-mail was in English, but it was not written by an American. As a linguist, I recognized the differences in formality and word use as signs that the person who wrote the e-mail is speaking from a set of experiences with English that differ from my own. Nothing in the e-mail was grammatically incorrect (although as a linguist I am hesitant to judge any linguistic differences as correct or incorrect, especially out of context).

Then later this afternoon I saw a tweet from Twitter on the correct use of Twitter abbreviations (RT, MT, etc.). If the growth of new Twitter users has indeed leveled off then Twitter is lucky, because the more Twitter grows the less they will be able to influence the language use of their base.

Language is a living entity that grows, evolves and takes shape based on individual experiences and individual perceptions of language use. If you think carefully about your experiences with language learning, you will quickly see that single exposures and dictionary definitions teach you little, but repeated viewings across contexts teach you much more about language.

Language use is patterned. Every word combination has a likelihood of appearing together, and that likelihood varies based on a host of contextual factors. Language use is complex. We use words in a variety of ways across a variety of contexts. These facts make language interesting, but they also obscure language use from casual understanding. The complicated nature of language in use interferes with analysts who build assumptions about language into their research strategies without realizing that their assumptions would not stand up to careful observation or study.

I would advise anyone involved in the study of language use (either as a primary or secondary aspect of their analysis) to take language use seriously. Fortunately, linguistics is fun and language is everywhere. So hop to it!

Let’s talk about data cleaning

Data cleaning has a bad rep. In fact, it has long been considered the grunt work of the data analysis enterprise. I recently came across a piece of writing in the Harvard Business Review that lamented the amount of time data scientists spend cleaning their data. The author feared that data scientists’ skills were being wasted on the cleaning process when they could be using their time for the analyses we so desperately need them to do.

I’ll admit that I haven’t always loved the process of cleaning data. But my view of the process has evolved significantly over the last few years.

As a survey researcher, my cleaning process used to begin with a tall stack of paper forms. Answers that did not make logical sense during the checking process sparked a trip to the file folders to find the form in question. The forms often held physical evidence of a indecision on the part of the respondent, such as eraser marks or an explanation in the margin, which could not have been reflected properly by the data entry person. We lost this part of the process when we moved to web surveys. It sometimes felt like a web survey left the respondent no way to communicate with the researcher about their unique situations. Data cleaning lost its personalized feel and detective story luster and became routine and tedious.

Despite some of the affordances of the movement to web surveys, much of the cleaning process stayed routed in the old techniques. Each form has its own id number, and the programmers would use those id numbers for corrections

if id=1234567, set var1=5, set var7=62

At this point a “good programmer” would also document the changes for future collaborators

*this person was not actually a forest ranger, and they were born in 1962
if id=1234567, set var1=5, set var7=62

Making these changes grew tedious very quickly, and the process seemed to drag on for ages. The researcher would check the data for a potential errors, scour the records that could hold those errors for any kind of evidence of the respondent’s intentions, and then handle each form one at a time.

My techniques for cleaning data have changed dramatically since those days. My goal is to use id numbers as rarely as possible, but instead to ask myself questions like “how can I tell that these people are not forest rangers?” The answer to these questions evokes a subtley different technique:

* these people are not actually forest rangers
if var7=35 and var1=2 and var10 contains ‘fire fighter’, set var1=5)

This technique requires honing and testing (adjusting the precision and recall), but I’ve found it to be far more efficient, faster, more comprehensive and, most of all- more fun (oh hallelujah!). It makes me wonder whether we have perpetually undercut the quality of the data cleaning we do simply because we hold the process in such low esteem.

So far I have not discussed data cleaning for other types of data. I’m currently working on a corpus of Twitter data, and I don’t see much of a difference in the cleaning process. The data types and programming statements I use are different, but the process is very close. It’s an interesting and challenging process that involves detective work, a better and growing understanding of the intricacies of the dataset, a growing set of programming skills, and a growing understanding of the natural language use in your dataset. The process mirrors the analysis to such a degree that I’m not really sure why it would be such a bad thing for analysts to be involved in data cleaning.

I’d be interested to hear what my readers have to say about this. Is our notion of the value and challenge of data cleaning antiquated? Is data cleaning a burden that an analyst should bear? And why is there so little talk about data cleaning, when we could all stand to learn so much from each other in the way of data structuring code and more?

Reflections and Notes from the Sentiment Analysis Symposium #SAS14

The Sentiment Analysis Symposium took place in NY this week in the beautiful offices of the New York Academy of Sciences. The Symposium was framed as a transition into a new era of sentiment analysis, an era of human analytics or humetrics.

The view from the New York Academy of Sciences is really stunning!

The view from the New York Academy of Sciences is really stunning!

Two main points that struck me during the event. One is that context is extremely important for developing high quality analytics, but the actual shape that “context” takes varies greatly. The second is a seeming disconnect between the product developers, who are eagerly developing new and better measures, and the customers, who want better usability, more customer support, more customized metrics that fit their preexisting analytic frameworks and a better understanding of why social media analysis is worth their time, effort and money.

Below is a summary of some of the key points. My detailed notes from each of the speakers, can be viewed here. I attended both the more technical Technology and Innovation Session and the Symposium itself.

Context is in. But what is context?

The big takeaway from the Technology and Innovation session, which was then carried into the second day of the Sentiment Analysis Symposium was that context is important. But context was defined in a number of different ways.

 

New measures are coming, and old measures are improving.

The innovative new strategies presented at the Symposium made for really amazing presentations. New measures include voice intonation, facial expressions via remote video connections, measures of galvanic skin response, self tagged sentiment data from social media sharing sites, a variety of measures from people who have embraced the “quantified self” movement, metadata from cellphone connections (including location, etc.), behavioral patterning on the individual and group level, and quite a bit of network analysis. Some speakers showcased systems that involved a variety of linked data or highly visual analytic components. Each of these measures increase the accuracy of preexisting measures and complicate their implementation, bringing new sets of challenges to the industry.

Here is a networked representation of the emotion transition dynamics of 'Hopeful'

Here is a networked representation of the emotion transition dynamics of ‘Hopeful’

This software package is calculating emotional reactions to a Youtube video that is both funny and mean

This software package is calculating emotional reactions to a Youtube video that is both funny and mean

Meanwhile, traditional text-based sentiment analyses are also improving. Both the quality of machine learning algorithms and the quality of rule based systems are improving quickly. New strategies include looking at text data pragmatically (e.g. What are common linguistics patterns in specific goal directed behavior strategies?), gaining domain level specificity, adding steps for genre detection to increase accuracy and looking across languages. New analytic strategies are integrated into algorithms and complementary suites of algorithms are implemented as ensembles. Multilingual analysis is a particular challenge to ML techniques, but can be achieved with a high degree of accuracy using rule based techniques. The attendees appeared to agree that rule based systems are much more accurate that machine learning algorithms, but the time and expertise involved has caused them to come out of vogue.

 

“The industry as a whole needs to grow up”

I suspect that Chris Boudreaux of Accenture shocked the room when he said “the industry as a whole really needs to grow up.” Speaking off the cuff, without his slides after a mishap and adventure, Boudreaux gave the customer point of view toward social media analytics. He said said that social media analysis needs to be more reliable, accessible, actionable and dependable. Companies need to move past the startup phase to a new phase of accountability. Tools need to integrate into preexisting analytic structures and metrics, to be accessible to customers who are not experts, and to come better supported.

Boudreaux spoke of the need for social media companies to better understand their customers. Instead of marketing tools to their wider base of potential customers, the tools seem to be developed and marketed solely to market researchers. This has led to a more rapid adoption among the market research community and a general skepticism or ambivalence across other industries, who don’t see how using these tools would benefit them.

The companies who truly value and want to expand their customer base will focus on the usability of their dashboards. This is an area ripe for a growing legion of usability experts and usability testing. These dashboards cannot restrict API access and understanding to data scientist experts. They will develop, market and support these dashboards through productive partnerships with their customers, generating measures that are specifically relevant to them and personalized dashboards that fit into preexisting metrics and are easy for the customers to understand and react to in a very practical and personalized sense.

Some companies have already started to work with their customers in more productive ways. Crimson Hexagon, for example, employs people who specialize in using their dashboard. These employees work with customers to better understand and support their use of the platform and run studies of their own using the platform, becoming an internal element in the quality feedback loop.

 

Less Traditional fields for Social Media Analysis:

There was a wide spread of fields represented at the Symposium. I spoke with someone involved in text analysis for legal reasons, including jury analyses. I saw an NYPD name tag. Financial services were well represented. Publishing houses were present. Some health related organizations were present, including neuroscience specialists, medical practitioners interested in predicting early symptoms of diseases like Alzheimer’s, medical specialists interested in helping improve the lives of people with diseases like Autism (e.g. with facial emotion recognition devices), pharmaceutical companies interested in understanding medical literature on a massive scale as well as patient conversation about prescriptions and participation in medical trials. There were traditional market research firms, and many new startups with a wide variety of focuses and functions. There were also established technology companies (e.g. IBM and Dell) with innovation wings and many academic departments. I’m sure I’ve missed many of the entities present or following remotely.

The better research providers can understand the potential breadth of applications  of their research, the more they can improve the specific areas of interest to these communities.

 

Rethinking the Public Image of Sentiment Analysis:

There was some concern that “social” is beginning to have too much baggage to be an attractive label, causing people to think immediately of top platforms such as Facebook and Twitter and belying the true breadth of the industry. This prompted a movement toward other terms at the symposium, including human analytics, humetrics, and measures of human engagement.

 

Accuracy

Accuracy tops out at about 80%, because that’s the limit of inter-rater reliability in sentiment analysis. Understanding the more difficult data is an important challenge for social media analysts. It is important for there to be honesty with customers and with each other about the areas where automated tagging fails. This particular area was a kind of elephant in the room- always present, but rarely mentioned.

Although an 80% accuracy rate is really fantastic compared to no measure at all, and it is an amazing accomplishment given the financial constraints that analysts encounter, it is not an accuracy rate that works across industries and sectors. It is important to consider the “fitness for use” of an analysis. For some industries, an error is not a big deal. If a company is able to respond to 80% of the tweets directed at them in real-time, they are doing quite well, But when real people or weightier consequences are involved, this kind of error rate is blatantly unacceptable. These are the areas where human involvement in the analysis is absolutely critical. Where, honestly speaking, are algorithms performing fantastically, and where are they falling short? In the areas where they fall short, human experts should be deployed, adding behavioral and linguistic insight to the analysis.

One excellent example of Fitness for Use was the presentation by Capital Market Exchange. This company operationalizes sentiment as expert opinion. They mine a variety of sources for expert opinions about investing, and then format the commonalities in an actionable way, leading to a substantial improvement above market performance for their investors. They are able to gain a great deal of market traction that pure sentiment analysts have not by valuing the preexisting knowledge structures in their industry.

 

Targeting the weaknesses

It is important that the field look carefully at areas where algorithms do and do not work. The areas where they don’t represent whole fields of study, many of which have legions of social media analysts at the ready. This includes less traditional areas of linguistics, such as Sociolinguistics, Conversation Analysis (e.g. looking at expected pair parts) and Discourse Analysis (e.g. understanding identity construction), as well as Ethnography (with fast growing subfields, such as Netnography), Psychology and Behavioral Economics. Time to think strategically to better understand the data from new perspectives. Time to more seriously evaluate and invest in neutral responses.

 

Summing Up

Social media data analysis, large scale text analysis and sentiment analysis have enjoyed a kind of honeymoon period. With so many new and fast growing data sources, a plethora of growing needs and applications, and a competitive and fast growing set of analytic strategies, the field has been growing at an astronomical rate. But this excitement has to be balanced out with the practical needs of the marketplace. It is time for growing technologies to better listen to and accommodate the needs of the customer base. This shift will help ensure the viability of the field and free developers up to embrace the spirit of intellectual creativity.

This is an exciting time for a fast growing field!

Thank you to Seth Grimes for organizing such a great event.

 

Free Range Research will cover the Sentiment Symposium in NYC next week #SAS14

Next week Free Range Research will be in NYC to cover the Sentiment Symposium and Innovation session, and I can’t tell you how excited I am about it!

The development of useful analytics hinges on constant innovation and experimentation, and binary positive/negative measures don’t come close to describing the full potential of social media data. This year’s symposium is an effort to confront the limitations of calcified measures of sentiment head on by introducing new measures and new perspectives.

As a programmer, a quantitative and qualitative analyst, a recent academic, and a fervent believer in the power of the power of mixed methods and interdisciplinary research, I am eager to cover the Symposium as both an enthusiastic and a critical voice. The new directions that will be represented are exciting and interesting, and I expect to gain a better feel for many cutting edges analytic practices. But the proprietary and competitive nature of the social media marketplace has led to countless overblown claims. I do not plan to simply be a conduit for these. My goal will be to share as much as possible of what I learn at the Symposium in a grounded and accessible way, as timely as possible, offering counterpoints and data driven examples when possible, on both my blog and through my Twitter handle @FreeRangeRsrch

I hope you’ll join me!

 

today in research & zen: “What is known as ‘realizing the mystery’ is nothing more than breaking through to grab an ordinary person’s life” Te-Shan

Planning another Online Research, Offline lunch

I’m planning another Online Research, Offline lunch for researchers in the Washington DC area later this month. The specific date and location are TBA, but it will be toward the end of February near Metro Center.

These lunches are designed to welcome professionals and students involved in online research across a variety of disciplines, fields and sectors. Past attendees have had a wide array of interests and specialties, including usability and interface design, data science, natural language processing, social network analysis, social media monitoring, discourse analysis, netnography, digital humanities and library science.

The goal of this series is to provide an informal venue for a diverse set of researchers to talk with each other and gain a wider context for understanding their work. They are an informal and flexible way to researchers to meet each other, talk and learn. Although Washington DC is a great meeting place for specific areas of online research, there are few informal opportunities for interdisciplinary gatherings of professionals and academics.

Here is a form that can be used to add new people to the list. If you’re already on the list you do not need to sign up again. Please feel free to share the form with anyone else who may be interested:

Storytelling about the Past and Predicting the Future: On People, Computers and Research in 2014 and Beyond

My Grandma was a force to be reckoned with. My grandfather was a writer, and he described her driving down the street amidst symphonies. She was beautiful and stubborn, strong willed and sharp. Once a young woman with the good looks of a model, she wore high heels and took daily trips to the gym well into her 90’s. At the age of 94 she managed to run across her house, turn off the water and stand with her hand on her hip in front of the shower before I returned from the next room over with the shampoo I forgot (lest I waste water).

My Grandma, looking amazing

My Grandma, looking amazing

A few years ago I visited her in Florida. She collected work for all of her visitors to do, and we were busy from the moment I arrived. To my surprise, many of the tasks she had gathered involved dealing with customer service and discovering the truth in advertisements. At one point she led me into the local pharmacy with a stack of papers and asked to see the manager. Once she found the manager she began to go through the papers one by one and ask about them. The first paper on the stack was about the Magic Jack. He showed her the package, and she questioned him in depth about how it worked. I was shocked. I’d never thought of a store manager in this role before.

After that trip I began to pay closer attention to the ways in which the people around me dealt with customer service, and I became a kind of customer service liaison for my family. My older family members had an expectation that any customer service agent be both extensively knowledgeable and dependably respectful, but the problems of customer service seemed to have grown beyond this small, personable level to a point where a large network of people with structurally different areas of knowledge act together to form a question answering system. The amount and structure of knowledge necessary has become the focus of the customer service problem, and people everywhere complain about the lack of knowledge, ability and pleasant attitude of the customer service agents they encounter.

This is a problem with many layers and levels to it, and it is a problem that reflects the developing data science industry well. In order to deliver good customer service a great deal of information has to be organized and structured in a meaningful way to allow for optimal extraction. But this layer cannot be everything. The customer service interaction itself needs to be set-up in such a way to allow customers to feel satisfied. People expect personalized, accurate interactions that are structured in a way that is intuitive to them. The customer service experience cannot be the domain of the data scientists. If it is automated, it requires usability experts to develop and test systems that are intuitive and easy to use. If it is done by people, the people need to have access to the expertise necessary for them to do their job and be trained in successful interpersonal interaction. I believe that this whole system could be integrated well under a single goal: to provide timely and direct answers to customer inquiries in 3 steps or less.

The past few years have brought a rapid increase in customization. We have learned to expect the information around us to be customized, curated and preprocessed. We expect customer service to know intuitively what our problems are and answer them with ease. We expect Facebook to know what we want to see and customize our streams appropriately. We expect news sites to be structured to reflect the way we use them. This increase in demand and expectations is the drive behind our hunger for data science, and it will fuel a boom in data and information science positions until we have a ubiquitous underlayer of organized information across all necessary domains.

But data and information science are new fields and not well understood. Our expectations as users exceed the abilities of this fast-evolving field. We attract pioneers who are willing to step into a field that is changing shape beneath their feet as they work. But we ask for too much of a result and expect too much of a result, because these pioneers can’t be everything across all fields. They are an important structural layer of our newly unfolding economy, but in each case, another layer of people are needed in order to achieve the end result.

Usability is an important step above the data and information science layer. Through usability studies, Facebook will eventually learn that people and goals are not constant across all visits. Sometimes I look at Facebook simply to see if I’ve missed any big developments in the lives of my friends and loved ones. Sometimes I want to catch news. Sometimes I’m bored and looking for ridiculous stuff to entertain me. Sometimes I have my daughter next to me and want to show her funny pet pictures that I normally wouldn’t look twice at. Through usability studies, Facebook will eventually learn that users need some control over the information presented to them when they visit.

Through usability studies newspapers will better understand the important practice of headline scanning and develop pay models that work with peoples reading habits. Through qualitative research newspapers will understand their importance as the originators of news about big events with few witnesses, like peace treaties and celebrity births and deaths and the real value of social media for events with large numbers of witnesses and points of view. News media sources are deep in a period of transition where they are learning to better understand dissemination, virality, clicks, page views, reader behavior and reader expectations, and the strengths and weaknesses of social media news sources.

There have been many blog posts (like this one) about Isaac Asimov’s predictions for the future, because he was so right about so many things. At this point we’re at a unique vantage point where his notions of machine programmers and machine tenders are taking deeper shape. This year we will continue to see these changes form and reform around us.

Great readings that might shake you to your academic core? I’m compiling a list

In the spirit of research readings that might shake you to your academic core, I’m compiling a list. Please reply to this thread with any suggestions you have to add. They can be anything from short blog posts (microblog?) to research articles to books. What’s on your ‘must read’ list?

Here are a couple of mine to kick us off:

 

Charles Goodwin’s Professional Vision paper

I don’t think I’ve referred to any paper as much as this one. It’s about the way our professional training shapes the way we see the things around us. Shortly after reading this paper I was in the gym thinking about commonalities between the weight stacks and survey scales. I expect myself to be a certain relative strength, and when that doesn’t correlate with the place where I need to place my pin I’m a little thrown off.

It also has a deep analysis of the Rodney King verdict.

 

Revitalizing Chinatown Into a Heterotopia by Jia Lou

This article is based on a geosemiotic analysis of DC’s Chinatown. It is one of the articles that helped me to see that data really can come in all forms

 

After method: Mess in Social Science Research by John Law

This is the book that inspired this list. It also inspired this blog post.

 

On Postapocalyptic Research Methods and Failures, Honesty and Progress in Research

I’m reading a book that I like to call “post-apocalyptic research methodology.” It’s ‘After Method: Mess in Social Science Research’ by John Law. At this point the book reads like a novel. I can’t quite imagine where he’ll take his premise, but I’m searching for clues and turning pages. In the meantime, I’ve been thinking quite a bit about failure, honesty, uncertainty and humility in research.

How is the current research environment like a utopian society?

The research process is often idealized in public spaces. Whether the goal of the researcher is to publish a paper based on their research, present to an audience of colleagues or stakeholders about their research, or market the product of their research, all researchers have a vested interest in the smoothness of the research process. We expect to approach a topic, perform a series of time-tested methods or develop innovative new methods with strong historical traditions, apply these methods as neatly as possible, and end up with a series of strong themes that describe the majority of our data. However, in Law’s words “Parts of the world are caught in our ethnographies, our histories and our statistics. But other parts are not, and if they are then this is because they have been distorted into clarity.” (p. 2) We think of methods as a neutral middle step and not a political process, and this way of thinking allows us to focus on reliability and validity as surface measures and not inherent questions. “Method, as we usually imagine it, is a system for offering more or less bankable guarantees.” (p. 9)

Law points out that research methods are, in practice, very limited in the social sciences “talk of method still tends to summon up a relatively limited repertoire of responses.” (p. 3) Law also points out that every research method is inherently political. Every research method involves a way of seeing or a way of looking at the data, and that perspective maps onto the findings it yields. Different perspectives yield different findings, whether they are subtly or dramatically different. Law’s central assertion is that methods don’t just describe social realities but also help to create them. Recognizing the footprint of our own methods is a step toward better understanding our data and results.

In practice, the results that we focus on are largely true. They describe a large portion of the data, ascribing the rest of the data to noise or natural variation. When more of our data is described in our results, we feel more confident about our data and our analysis.

Law argues that this smoothed version of reality is far enough from the natural world that it should perk our ears. Research works to create a world that is simple and falls into place neatly and resembles nothing we know, “’research methods’ passed down to us after a century of social science tend to work on the assumption that the world is properly to be understood as a set of fairly specific, determinate, and more or less identifiable processes.” (p. 5) He suggests instead that we should recognize the parts that don’t fit, the areas of uncertainty or chaos, and the areas where our methods fail. “While standard methods are often extremely good at what they do, they are badly adapted to the study of the ephemeral, the indefinite and the irregular.” (p. 4). “Regularities and standardizations are incredibly powerful tools, but they set limits.” (p. 6)

Is the Utopia starting to fall apart?

The current research environment is a bit different from that of the past. More people are able to publish research at any stage without peer review using media like blogs. Researchers are able to discuss their research while it is in progress using social media like Twitter. There is more room to fail publicly than there ever has been before, and this allows for public acknowledgment of some of the difficulties and challenges that researcher’s face.

Building from ashes

Law briefly introduces his vision on p. 11 “My hope is that we can learn to live in a way that is less dependent on the automatic. To live more in and through slow method, or vulnerable method, or quiet method. Multiple method. Modest method. Uncertain method. Diverse method.”

Many modern discussions of about management talk about the value of failure as an innovative tool. Some of the newer quality control measures in aviation and medicine hinge on the recognition of failure and the retooling necessary to prevent or limit the recurrences of specific types of events. The theory behind these measures is that failure is normal and natural, and we could never predict the many ways in which failure could happen. So, instead of exclusively trying to predict or prohibit failure, failures should be embraced as opportunities to learn.

Here we can ask: what can researchers learn from the failures of the methods?

The first lesson to accompany any failure is humility. Recognizing our mistakes entails recognizing areas where we fell short, where our efforts were not enough. Acknowledging that our research training cannot be universal, that applying research methods isn’t always straightforward and simple, and that we cannot be everything to everyone could be an important stage of professional development.

How could research methodology develop differently if it were to embrace the uncertain, the chaotic and the places where we fall short?

Another question: What opportunities to researchers have to be publicly humble? How can those spaces become places to learn and to innovate?

Note: This blog post is dedicated to Dr Jeffrey Keefer @ NYU, who introduced me to this very cool book and has done some great work to bring researchers together

Methodology will only get you so far

I’ve been working on a post about humility as an organizational strategy. This is not that post, but it is also about humility.

I like to think of myself as a research methodologist, because I’m more interested in research methods than any specific area of study. The versatility of methodology as a concentration is actually one of the biggest draws for me. I love that I’ve been able to study everything from fMRI subjects and brain surgery patients to physics majors and teachers, taxi drivers and internet activists. I’ve written a paper on Persepolis as an object of intercultural communication and a paper on natural language processing of survey responses, and I’m currently studying migration patterns and communication strategies.

But a little dose of humility is always a good thing.

Yesterday I hosted the second in a series of online research, offline lunches that I’ve been coordinating. The lunches are intended as a way to get people from different sectors and fields who are conducting research on the internet together to talk about their work across the artificial boundaries of field and sector. These lunches change character as the field and attendees change.

I’ve been following the field of online research for many years now, and it has changed dramatically and continually before my eyes. Just a year ago Seth Grimes Sentiment Analysis Symposia were at the forefront of the field, and now I wonder if he is thinking of changing the title and focus of his events. Two years ago tagging text corpora with grammatical units was a standard midstep in text analysis, and now machine algorithms are far more common and often much more effective, demonstrating that grammar in use is far enough afield from grammar in theory to generate a good deal of error. Ten years ago qualitative research was often more focused on the description of platforms than the behaviors specific to them, and now the specific innerworkings of platform are much more of an aside to a behavioral focus.

The Association of Internet Researchers is currently having their conference in Denver (#ir14), generating more than 1000 posts per day under the conference hashtag and probably moving the field far ahead of where it was earlier this week.

My interest and focus has been on the methodology of internet research. I’ve been learning everything from qualitative methods to natural language processing and social network analysis to bayesian methods. I’ve been advocating for a world where different kinds of methodologists work together, where qualitative research informs algorithms and linguists learn from the differences between theoretical grammar and machine learned grammar, a world where computer scentists work iteratively with qualitative researchers. But all of these methods fall short because there is an elephant in the methodological room. This elephant, ladies and gentleman, is made of content. Is it enough to be a methodological specialist, swinging from project to project, grazing on the top layer of content knowledge without ever taking anything down to its root?

As a methodologist, I am free to travel from topic area to topic area, but I can’t reach the root of anything without digging deeper.

At yesterday’s lunch we spoke a lot about data. We spoke about how the notion of data means such different things to different researchers. We spoke about the form and type of data that different researchers expect to work with, how they groom data into the forms they are most comfortable with, how the analyses are shaped by the data type, how data science is an amazing term because just about anything could be data. And I was struck by the wide-openness of what I was trying to do. It is one thing to talk about methodology within the context of survey research or any other specific strategy, but what happens when you go wider? What happens when you bring a bunch of methodologists of all stripes together to discuss methodology? You lack the depth that content brings. You introduce a vast tundra of topical space to cover. But can you achieve anything that way? What holds together this wide realm of “research?”

We speak a lot about the lack of generalizable theories in internet research. Part of the hope for qualitative research is that it will create generalizable findings that can drive better theories and improve algorithmic efforts. But that partnership has been slow, and the theories have been sparse and lightweight. Is it possible that the internet is a space where theory alone just doesn’t cut it? Could it be that methodologists need to embrace content knowledge to a greater degree in order to make any of the headway we so desperately want to make?

Maybe the missing piece of the puzzle is actually the picture painted on the pieces?

comic

The data Rorschach test, or what does your research say about you?

Sure, there is a certain abundance of personality tests: inkblot tests, standardized cognitive tests, magazine quizzes, etc. that we could participate in. But researchers participate in Rorschach tests of our own every day. There are a series of questions we ask as part of the research process, like:

What data do we want to collect or use? (What information is valuable to us? What do we call data?)

What format are we most comfortable with it in? (How clean does it have to be? How much error are we comfortable with? Does it have to resemble a spreadsheet? How will we reflect sources and transformations? What can we equate?)

What kind of analyses do we want to conduct? (This is usually a great time for our preexisting assumptions about our data to rear their heads. How often do we start by wondering if we can confirm our biases with data?!)

What results do we choose to report? To whom? How will we frame them?

If nothing else, our choices regarding our data reflect many of our values as well as our professional and academic experiences. If you’ve ever sat in on a research meeting, you know that “you want to do WHAT with which data?!” feeling that comes when someone suggests something that you had never considered.

Our choices also speak to the research methods that we are most comfortable with. Last night I attended a meetup event about Natural Language Processing, and it quickly became clear that the mathematician felt most comfortable when the data was transformed into numbers, the linguist felt most comfortable when the data was transformed into words and lexical units, and the programmer was most comfortable focusing on the program used to analyze the data. These three researchers confronted similar tasks, but their three different methods that will yield very different results.

As humans, we have a tendency to make assumptions about the people around us, either by assuming that they are very different or very much the same. Those of you who have seen or experienced a marriage or serious long-term partnership up close are probably familiar with the surprised feeling we get when we realize that one partner thinks differently about something that we had always assumed they would not differ on. I remember, for example, that small feeling that my world was upside down just a little bit when I opened a drawer in the kitchen and saw spoons and forks together in the utensil organizer. It had simply never occurred to me that anyone would mix the two, especially not my own husband!

My main point here is not about my husband’s organizational philosophy. It’s about the different perspectives inherently tied up in the research process. It can be hard to step outside our own perspective enough to see what pieces of ourselves we’ve imposed on our research. But that awareness is an important element in the quality control process. Once we can see what we’ve done, we can think much more carefully about the strengths and weaknesses of our process. If you believe there is only one way, it may be time to take a step back and gain a wider perspective.