Reflections and Notes from the Sentiment Analysis Symposium #SAS14

The Sentiment Analysis Symposium took place in NY this week in the beautiful offices of the New York Academy of Sciences. The Symposium was framed as a transition into a new era of sentiment analysis, an era of human analytics or humetrics.

The view from the New York Academy of Sciences is really stunning!

The view from the New York Academy of Sciences is really stunning!

Two main points that struck me during the event. One is that context is extremely important for developing high quality analytics, but the actual shape that “context” takes varies greatly. The second is a seeming disconnect between the product developers, who are eagerly developing new and better measures, and the customers, who want better usability, more customer support, more customized metrics that fit their preexisting analytic frameworks and a better understanding of why social media analysis is worth their time, effort and money.

Below is a summary of some of the key points. My detailed notes from each of the speakers, can be viewed here. I attended both the more technical Technology and Innovation Session and the Symposium itself.

Context is in. But what is context?

The big takeaway from the Technology and Innovation session, which was then carried into the second day of the Sentiment Analysis Symposium was that context is important. But context was defined in a number of different ways.

 

New measures are coming, and old measures are improving.

The innovative new strategies presented at the Symposium made for really amazing presentations. New measures include voice intonation, facial expressions via remote video connections, measures of galvanic skin response, self tagged sentiment data from social media sharing sites, a variety of measures from people who have embraced the “quantified self” movement, metadata from cellphone connections (including location, etc.), behavioral patterning on the individual and group level, and quite a bit of network analysis. Some speakers showcased systems that involved a variety of linked data or highly visual analytic components. Each of these measures increase the accuracy of preexisting measures and complicate their implementation, bringing new sets of challenges to the industry.

Here is a networked representation of the emotion transition dynamics of 'Hopeful'

Here is a networked representation of the emotion transition dynamics of ‘Hopeful’

This software package is calculating emotional reactions to a Youtube video that is both funny and mean

This software package is calculating emotional reactions to a Youtube video that is both funny and mean

Meanwhile, traditional text-based sentiment analyses are also improving. Both the quality of machine learning algorithms and the quality of rule based systems are improving quickly. New strategies include looking at text data pragmatically (e.g. What are common linguistics patterns in specific goal directed behavior strategies?), gaining domain level specificity, adding steps for genre detection to increase accuracy and looking across languages. New analytic strategies are integrated into algorithms and complementary suites of algorithms are implemented as ensembles. Multilingual analysis is a particular challenge to ML techniques, but can be achieved with a high degree of accuracy using rule based techniques. The attendees appeared to agree that rule based systems are much more accurate that machine learning algorithms, but the time and expertise involved has caused them to come out of vogue.

 

“The industry as a whole needs to grow up”

I suspect that Chris Boudreaux of Accenture shocked the room when he said “the industry as a whole really needs to grow up.” Speaking off the cuff, without his slides after a mishap and adventure, Boudreaux gave the customer point of view toward social media analytics. He said said that social media analysis needs to be more reliable, accessible, actionable and dependable. Companies need to move past the startup phase to a new phase of accountability. Tools need to integrate into preexisting analytic structures and metrics, to be accessible to customers who are not experts, and to come better supported.

Boudreaux spoke of the need for social media companies to better understand their customers. Instead of marketing tools to their wider base of potential customers, the tools seem to be developed and marketed solely to market researchers. This has led to a more rapid adoption among the market research community and a general skepticism or ambivalence across other industries, who don’t see how using these tools would benefit them.

The companies who truly value and want to expand their customer base will focus on the usability of their dashboards. This is an area ripe for a growing legion of usability experts and usability testing. These dashboards cannot restrict API access and understanding to data scientist experts. They will develop, market and support these dashboards through productive partnerships with their customers, generating measures that are specifically relevant to them and personalized dashboards that fit into preexisting metrics and are easy for the customers to understand and react to in a very practical and personalized sense.

Some companies have already started to work with their customers in more productive ways. Crimson Hexagon, for example, employs people who specialize in using their dashboard. These employees work with customers to better understand and support their use of the platform and run studies of their own using the platform, becoming an internal element in the quality feedback loop.

 

Less Traditional fields for Social Media Analysis:

There was a wide spread of fields represented at the Symposium. I spoke with someone involved in text analysis for legal reasons, including jury analyses. I saw an NYPD name tag. Financial services were well represented. Publishing houses were present. Some health related organizations were present, including neuroscience specialists, medical practitioners interested in predicting early symptoms of diseases like Alzheimer’s, medical specialists interested in helping improve the lives of people with diseases like Autism (e.g. with facial emotion recognition devices), pharmaceutical companies interested in understanding medical literature on a massive scale as well as patient conversation about prescriptions and participation in medical trials. There were traditional market research firms, and many new startups with a wide variety of focuses and functions. There were also established technology companies (e.g. IBM and Dell) with innovation wings and many academic departments. I’m sure I’ve missed many of the entities present or following remotely.

The better research providers can understand the potential breadth of applications  of their research, the more they can improve the specific areas of interest to these communities.

 

Rethinking the Public Image of Sentiment Analysis:

There was some concern that “social” is beginning to have too much baggage to be an attractive label, causing people to think immediately of top platforms such as Facebook and Twitter and belying the true breadth of the industry. This prompted a movement toward other terms at the symposium, including human analytics, humetrics, and measures of human engagement.

 

Accuracy

Accuracy tops out at about 80%, because that’s the limit of inter-rater reliability in sentiment analysis. Understanding the more difficult data is an important challenge for social media analysts. It is important for there to be honesty with customers and with each other about the areas where automated tagging fails. This particular area was a kind of elephant in the room- always present, but rarely mentioned.

Although an 80% accuracy rate is really fantastic compared to no measure at all, and it is an amazing accomplishment given the financial constraints that analysts encounter, it is not an accuracy rate that works across industries and sectors. It is important to consider the “fitness for use” of an analysis. For some industries, an error is not a big deal. If a company is able to respond to 80% of the tweets directed at them in real-time, they are doing quite well, But when real people or weightier consequences are involved, this kind of error rate is blatantly unacceptable. These are the areas where human involvement in the analysis is absolutely critical. Where, honestly speaking, are algorithms performing fantastically, and where are they falling short? In the areas where they fall short, human experts should be deployed, adding behavioral and linguistic insight to the analysis.

One excellent example of Fitness for Use was the presentation by Capital Market Exchange. This company operationalizes sentiment as expert opinion. They mine a variety of sources for expert opinions about investing, and then format the commonalities in an actionable way, leading to a substantial improvement above market performance for their investors. They are able to gain a great deal of market traction that pure sentiment analysts have not by valuing the preexisting knowledge structures in their industry.

 

Targeting the weaknesses

It is important that the field look carefully at areas where algorithms do and do not work. The areas where they don’t represent whole fields of study, many of which have legions of social media analysts at the ready. This includes less traditional areas of linguistics, such as Sociolinguistics, Conversation Analysis (e.g. looking at expected pair parts) and Discourse Analysis (e.g. understanding identity construction), as well as Ethnography (with fast growing subfields, such as Netnography), Psychology and Behavioral Economics. Time to think strategically to better understand the data from new perspectives. Time to more seriously evaluate and invest in neutral responses.

 

Summing Up

Social media data analysis, large scale text analysis and sentiment analysis have enjoyed a kind of honeymoon period. With so many new and fast growing data sources, a plethora of growing needs and applications, and a competitive and fast growing set of analytic strategies, the field has been growing at an astronomical rate. But this excitement has to be balanced out with the practical needs of the marketplace. It is time for growing technologies to better listen to and accommodate the needs of the customer base. This shift will help ensure the viability of the field and free developers up to embrace the spirit of intellectual creativity.

This is an exciting time for a fast growing field!

Thank you to Seth Grimes for organizing such a great event.

 

Advertisements

2 thoughts on “Reflections and Notes from the Sentiment Analysis Symposium #SAS14

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s