Professional Identity: Who am I? And who are you?

Last night I acted as a mentor at the annual Career Exploration Expo sponsored by my graduate program. Many of the students had questions about developing a professional identity. This makes sense, of course, because graduate school is an important time for discovering and developing a professional identity.

People enter our program (and many others) With a wide variety of backgrounds and interests. They choose from a variety of classes that fit their interests and goals. And then they try to map their experience onto job categories. But boxes are difficult to climb into and out of, and students soon discover that none of the boxes is a perfect fit.

I experienced this myself. I entered the program with an extensive and unquestioned background in survey research. Early in my college years (while I was studying and working in neuropsychology) I began to manage a clinical dataset in SPSS. Working with patients and patient files was very interesting, but to my surprise working with data using statistical software felt right to me much in the way that Ethiopian meals include injera and Japanese meals include rice (IC 2006 (1997) Ohnuki Tierney Emiko). I was actually teased by my friends about my love of data! This affinity served me well, and I enjoyed working with a variety of data sets while moving across fields and statistical programming languages.

But my graduate program blew my mind. I felt like I had spent my life underwater and then discovered the sky and continents. I discovered many new kinds of data and analytic strategies, all of which were challenging and rewarding. These discoveries inspired me to start this blog and have inspired me to attend a wide variety of events and read some very interesting work that I never would have discovered on my own. Hopefully followers of this blog have enjoyed this journey as much as I have!

As a recent graduate, I sometimes feel torn between worlds. I still work as a survey researcher, but I’m inspired by research methods that are beyond the scope of my regular work. Another recent graduate of our program who is involved in market research framed her strategy in a way that really resonated with me: “I give my customers what they want and something else, and they grow to appreciate the ‘something else.'” That sums up my current strategy. I do the survey management and analysis that is expected of me in a timely, high quality way. But I am also using my newly acquired knowledge to incorporate text analysis into our data cleaning process in order to streamline it, increasing both the speed and the quality of the process and making it better equipped to handle the data from future surveys. I do the traditional quantitative analyses, but I supplement them  with analyses of the open ended responses that use more flexible text analytic strategies. These analyses spark more quantitative analyses and make for much better (richer, more readable and more inspired) reports.

Our goal as professionals should be to find a professional identity that best capitalizes on  our unique knowledge, skills and abilities. There is only one professional identity that does all of that, and it is the one you have already chosen and continue to choose every day. We are faced with countless choices about what classes to take, what to read, what to attend, what to become involved in, and what to prioritize, and we make countless assessments about each. Was it worthwhile? Did I enjoy it? Would I do it again? Each of these choices constitutes your own unique professional self, a self which you are continually manufacturing. You are composed of your past, your present, and your future, and your future will undoubtedly be a continuation of your past and present. The best career coach you have is inside of you.

Now your professional identity is much more uniquely or narrowly focused that the generic titles and fields that you see in the professional marketplace. Keep in mind that each job listing that you see represents a set of needs that a particular organization has. Is this a set of needs that you are ready to fill? Is this a set of needs that you would like to fill? You are the only one who knows the answers to these questions.

Because it turns out that you are your best career coach, and you have been all along.

Advertisements

The holiday season and the post-degree process

I haven’t blogged much this month.

Yesterday I didn’t blog because I was wandering around my neighborhood with my kids and my winter boots, looking for the ultimate sledding hill that wasn’t just mud.

 

2013-12-10 13.03.42

I did get this cool shot of the snow melting:

2013-12-10 14.11.15

This past weekend I didn’t blog because I was trying to get some holiday shopping done. Holiday shopping is a mess of contradictions. The music and festive spirit are relaxing and wonderful, but the task at hand is to reckon with our wants. My goal lately has been exactly the opposite of this- to appreciate what abundance already constitutes my life and not to focus on needing or wanting more. This is an important part of my post degree process.

At the time of my graduation I joked with a close friend about expecting life to be like a musical, with the people around me singing and dancing my accomplishments and those of my classmates. For those of you still in school I hate to break your bubble, but there will likely not be a musical in your honor, as deserving as you may be.

Graduation is not the end of your work as a student. Your work will extend beyond graduation and in to what I’ve come to think of as an extra semester of undetermined length. This is the time when we try to make all of our hard work pay off. We learn that the world will not recognize our accomplishments unless we learn how to be our own best advocates, and we learn how difficult it is to advocate for ourselves across lines of field and areas of practice.

This process involves a reckoning between the idealized notions of our future that motivated us through late-nighters and all-nighters and the realities of our post degree lives. It also involves a surprisingly long transition from the frenetic pace of student life to the appreciative pace of real life. We learn how to channel the energy that is no longer focused on school work but free to roam across a wide range of interests and responsibilities. We forge a new set of priorities. We realize that we will not find jobs that are as well rounded as we are. We see that we are not frozen in place after our degrees but will continue the lifelong process of learning. We begin to find peace in the knowledge that what we have is enough. We may not have the yacht and the private plane, but we have food on our plates and in our bellies. And what we have is enough.

Graduates (especially in today’s employment market) have to wrestle with the responsibilities of post-degree life, the lack of recognition of their academic accomplishments, and the transition [back?] into the swing of daily work life. We have to transition from the big dreams of school life to the small rewards of real life. For me this process involves a compacting. It involves tightening the family budget and saving for bigger goals. It involves family challenges to see how long we can go between trips to the grocery store and the fun set of culinary challenges that rise from the emptier cupboards (Have you seen those cooking shows where the contestants are challenged to invent a meal based on a small number of random ingredients?). It involves decluttering my house to get rid of extra stuff, appreciate what we have and lessen our responsibilities (less stuff to clean!), and it involves spoiling my family with the time and attention I couldn’t give them before.

This all seems to directly contradict the goals of holiday shopping. I wandered through aisle after aisle of stuff that I couldn’t imagine needing or wanting, thinking of needs and wants as a kind of black hole where needing and wanting can simply lead to more needing and wanting. I’m not sure how my holiday shopping process will shake out this year, but I do know that my happiness and the happiness of those I love can’t be found on any store shelves.

For you students, recent graduates and professional researchers and other readers, I wish you all the peace and gratitude of the season. May the new year bless you with continued curiosity. May we never stop learning and growing. May the process and daily rituals of our lives be reward enough. We can’t anticipate the challenges 2014 will bring, but let us be grateful that we have the tools that we will need to greet them with.

And most of all, I want to thank those of you who read my blog posts. Thank you for your time and attention and for encouraging me to continue to explore. I hope to reward you soon with a rundown of some particularly great events I’ve attended lately!

Planning a second “Online Research, Offline Lunch”

In August we hosted the first Online Research, Offline Lunch for researchers involved in online research in any field, discipline or sector in the DC area. Although Washington DC is a great meeting place for specific areas of online research, there are few opportunities for interdisciplinary gatherings of professionals and academics. These lunches provide an informal opportunity for a diverse set of online researchers to listen and talk respectfully about our interests and our work and to see our endeavors from new, valuable perspectives. We kept the first gathering small. But the enthusiasm for this small event was quite large, and it was a great success! We had interesting conversations, learned a lot, made some valuable connections, and promised to meet again.

Many expressed interest in the lunches but weren’t able to attend. If you have any specific scheduling requests, please let me know now. Although I certainly can’t accommodate everyone’s preferences, I will do my best to take them into account.

Here is a form that can be used to add new people to the list. If you’re already on the list you do not need to sign up again. Please feel free to share the form with anyone else who may be interested:

 

Language use & gaps in STEM education

Today our microanalytic research group focused on videos of STEM education.

 

Watching STEM classes reminds me of a field trip a fellow researcher and I took to observe a physics class that used project based learning. Project based learning is a more hands on and collaborative teaching approach which is gaining popularity among physics educators as an alternative to traditional lecture. We observed an optics lab at a local university, and after the class we spoke about what we had observed. Whereas the other researcher had focused on the optics and math, I had been captivated by the awkwardness of the class. I had never envisioned the PJBL process to be such an awkward one!

 

The first video that we watched today involved a student interchangeably using the terms chart and graph and softening their use with the term “thing.” There was some debate among the researchers as to whether the student had known the answer but chosen to distance himself from the response or whether the student was hedging because he was uncertain. The teacher responded by telling the student not to talk about things, but rather to talk to her in math terms.

 

What does it mean to understand something in math? The math educators in the room made it clear that a lack of the correct terminology signaled that the student didn’t necessarily understand the subject matter. There was no way for the teacher to know whether the student knew the difference between a chart and a graph from their use of the terms. The conversation on our end was not about the conceptual competence that the student showed. He was at the board, working through the problem, and he had begun his interaction with a winding description of the process necessary (as he imagined it) to solve the problem. It was clear that he did understand the problem and the necessary steps to solve it on some level (whether correct or not), but that level of understanding was not one that mattered.

 

I was surprised at the degree to which the use of mathematical language was framed as a choice on the part of the student. The teacher asked the student to use mathematical language with her. One math educator in our group spoke about students “getting away with fudging answers.” One researcher said that the correct terms “must be used,” and another commented about the lack of correct terms as indication that the student did “not have a proper understanding” of the material. All of this talk seems to bely the underlying truth that the student chose to use inexact language for a reason (whether social or epistemic).

 

The next video we watched showed a math teacher working through a problem. I was really struck by her lack of enthusiasm. I noticed her sighs, her lack of engagement with the students even when directly addressing them, and her tone when reading the problem from the textbook. Despite her apparent lack of enthusiasm, her mood appeared considerably brighter when she finished working through the problem. I found this interesting, because physics teachers usually report that their favorite part of their job is watching the students’ “a-ha!” moments. Maybe the rewards of technical problem solving are a motivator for both students and teachers alike? But the process of technical problem solving itself is rarely as motivating.

 

All of this leads me to one particularly interesting question. How do people in STEM learning settings distance themselves from the material? What discursive tools do they use? Who uses these discursive tools? And does the use of these tools change over time? I wonder in particular whether discursive distancing, which often parallels female discursive patterns, is more common among females than males as they progress through their education? Is there any kind of quantitative correlate to the use of discursive distancing? Is it more common among people who believe that they aren’t good at STEM? Is discursive distancing less common among people who pursue STEM careers? Is there a correlation between distancing and test scores?

 

Awkwardness in STEM education is fertile ground for qualitative researchers. To what extent is the learning or solving process emphasized and to what extent is the answer valued above all else? How is mathematical language socialized? The process of solving technical problems is a messy and uncomfortable one. It rarely goes smoothly, and in fact challenges often lead to more challenges. The process of trying and failing or trying and learning is not a sexy or attractive one, and there is rampant concern that focusing on the process of learning robs students of the ability to demonstrate their knowledge in a way that matters to people who speak the traditional languages of math and science.

 

We spoke a little about the phenomena of connected math. It sounds to me very closely parallel to project based learning initiatives in physics. I was left wondering why such a similar teaching process could be valued as a teaching tool for all students in one field and relegated to a teaching tool for struggling students in another neighboring field. I wonder about the similarities and differences between the outcomes of these methods. Much of this may rest on politics, and I suspect that the politics are rooted in deeply held and less questioned beliefs about STEM education.

 

STEM education initiatives have grown quite a bit in recent years, and it’s clear that there is quite a bit of interesting research left to be done.

Upcoming DC Event: Online Research Offline Lunch

ETA: Registration for this event is now CLOSED. If you have already signed up, you will receive a confirmation e-mail shortly. Any sign-ups after this date will be stored as a contact list for any future events. Thank you for your interest! We’re excited to gather with such a diverse and interesting group.

—–

Are you in or near the DC area? Come join us!

Although DC is a great meeting place for specific areas of online research, there are few opportunities for interdisciplinary gatherings of professionals and academics. This lunch will provide an informal opportunity for a diverse set of online researchers to listen and talk respectfully about our interests and our work and to see our endeavors from new, valuable perspectives.

Date & Time: August 6, 2013, 12:30 p.m.

Location: Near Gallery Place or Metro Center. Once we have a rough headcount, we’ll choose an appropriate location. (Feel free to suggest a place!)

Please RSVP using this form:

Still grappling with demographics

Last year I wrote about my changing perspective on demographic variables. My grappling has continued since then.
I think of it as an academic puberty of sorts.

I remember the many crazy thought exercises I subjected myself to as a teenager, as I tried to forge my own set of beliefs and my own place in the world. I questioned everything. At times I was under so much construction that it was a wonder I functioned at all. Thankfully, I survived to enter my twenties intact. But lately I have been caught in a similar thought exercise of sorts, second guessing the use of sociological demographic variables in research.

Two sample projects mark two sides of the argument. One is a potential study of the climate for underrepresented faculty members in physics departments. In our exploration of this subject, the meaning of underrepresented was raised. Indeed there are a number of ways in which a faculty member could be underrepresented or made uncomfortable: gender, race, ethnicity, accent, bodily differences or disabilities, sexual orientation, religion, … At some point, one could ask whether it matters which of these inspired prejudicial or different treatment, or whether the hostile climate is, in and of itself, important to note. Does it make sense to tick off which of a set of possible prejudices are stronger or weaker at a particular department? Or does it matter first that the uncomfortable climate exists, and that personal differences that should be professionally irrelevant are coming into professional play. One could argue that the climate should be the first phase of the study, and any demographics could be secondary. One might be particularly tempted to argue for this arrangement given the small sizes of the departments and hesitation among many faculty members to supply information that could identify them personally.

If that was the only project on my mind, I might be tempted to take a more deconstructionist view of demographic variables altogether. But there is another project that I’m working on that argues against the deconstructionist view- the Global Survey of Physicists.

(Side or backstory: The global survey is kind of a pet project of mine, and it was the project that led me to grad school. Working on it involved coordinating survey design, translation and dissemination with representatives from over 100 countries. This was our first translation project. It began in English and was then translated into 7 additional languages. The translation process took almost a full year and was full of unexpected complications. Near the end of this phase, I attended a talk at the Bureau of Labor Statistics by Yuling Pan from Census. The talk was entitled ‘the Sociolinguistics of Survey Translation.’ I attended it never having heard of Sociolinguistics before. During the course of the talk, Yuling detailed and dissected experiences that paralleled my own into useful pieces and diagnosed and described some of the challenges I had encountered in detail. I was so impressed with her talk that I googled Sociolinguistics as soon as I returned to my office, discovered the MLC a few minutes later. One month later I was visiting Georgetown and working on my application for the MLC. I like to say it was like being swept up off my feet and then engaging in a happy shotgun marriage)

The Global Survey was designed to elicit gender differences in terms of experiences, climate, resources and opportunities, as well as the effects of personal and family constraints and decisions on school and career. The survey worked particularly well, and each dive into the data proves fascinating. This week I delved deeper into the dynamics of one country and saw women’s sources of support erode as they progressed further into school and work, saw the women transition from a virtual parity in school to difficult careers, beginning with their significantly larger chance of having to choose their job because it was the only offer they received, and becoming significantly worse with the introduction of kids. In fact, we found through this survey that kids tend to slow women’s careers and accelerate men’s!

What do these findings say about the use of demographic variables? They certainly validate their usefulness and cause me to wonder whether a lack of focus on demographics would lessen the usefulness of the faculty study. Here I’m reminded that it is important, when discussing demographic variables, to keep in mind that they are not arbitrary. They reflect ways of seeing that are deeply engrained in society. Gender, for example, is the first thing to note about a baby, and it determines a great deal from that point in. Excluding race or ethnicity seems foolish, too, in a society that so deeply engrains these distinctions.

The problem may be in the a priori or unconsidered applications of demographic variables. All too often, the same tired set of variables are dredged up without first considering whether they would even provide a useful distinction or the most useful cuts to a dataset. A recent example of this is the study that garnered some press about racial differences in e-learning. From what I read of the study, all e-learning was collapsed into a single entity, an outcome or dependent variable (as in some kind if measure of success of e-learning), and run by a set of traditional x’s or independent variables, like race and socioeconomic status. In this case, I would have preferred to first see a deeper look into the mechanics of e-learning than a knee jerk rush to the demographic variables. What kind of e-learning course was it? What kinds of interaction were fostered between the students and the teacher, material and other students? So many experiences of e-learning were collapsed together, and differences in course types and learning environments make for more useful and actionable recommendations than demographics ever could.

In the case of the faculty and global surveys as well, one should ask what approaches to the data would yield the most useful analyses. Finding demographic differences leads to what- an awareness of discrimination? Discrimination is deep seeded and not easily cured. It is easy to document and difficult to fix. And yet, more specific information about climate, resources and opportunities could be more useful or actionable. It helps to ask what we can achieve through our research. Are we simply validating or proving known societal differences or are we working to create actionable recommendations? What are the most useful distinctions?

Most likely, if you take the time to carefully consider the information you collect, the usefulness of your analyses and the validity of your hypotheses, you are one step above anyone rotely applying demographic variables out of ill-considered habit. Kudos to you for that!

Getting to know your data

On Friday, I had the honor of participating in a microanalysis video discussion group with Fred Erickson. As he was introducing the process to the new attendees, he said something that really caught my attention. He said that videos and field notes are not data until someone decides to use them for research.

As someone with a background in survey research, the question of ‘what is data?’ was never really on my radar before graduate school. Although it’s always been good practice to know where your data comes from and what it represents in order to glean any kind of validity from your work, data was unquestioningly that which you see in a spreadsheet or delimited file, with cases going down and variables going across. If information could be formed like this, it was data. If not, it would need some manipulation. I remember discussing this with Anna Trester a couple of years ago. She found it hard to understand this limited framework, because, for her, the world was a potential data source. I’ve learned more about her perspective in the last couple of years, working with elements that I never before would have characterized as data, including pictures, websites, video footage of interactions, and now fieldwork as a participant observer.

Dr Erickson’s observation speaks to some frustration I’ve had lately, trying to understand the nature of “big data” sets. I’ve seen quite a bit of people looking for data, any data, to analyze. I could see the usefulness of this for corpus linguists, who use large bodies of textual data to study language use. A corpus linguist is able to use large bodies of text to see how we use words, which is a systematically patterned phenomena that goes much deeper than a dictionary definition could. I could also see the usefulness of large datasets in training programs to recognize genre, a really critical element in automated text analysis.

But beyond that, it is deeply important to understand the situated nature of language. People don’t produce text for the sake of producing text. Each textual element represents an intentioned social action on the part of the writer, and social goals are accomplished differently in different settings. In order for studies of textual data to produce valid conclusions with social commentary, contextual elements are extremely important.

Which leads me to ask if these agnostic datasets are being used solely as academic exercises by programmers and corpus linguists or if our hunger for data has led us to take any large body of information and declare it to be useful data from which to excise valid conclusions? Worse, are people using cookie cutter programs to investigate agnostic data sets like this without considering the wider validity?

I urge anyone looking to create insight from textual data to carefully get to know their data.