Total Survey Error: nanny to some, wise elder for some, strange parental friend for others

Total Survey Error and I are long-time acquaintences, just getting to know each other better. Looking at TSE is, for me, like looking at my work in survey research through a distorted mirror to an alternate universe. This week, I’ve spent some time closely reading Groves’ Past, Present and Future of Total Survey Error, and it provided some historical context to the framework, as well as an experienced account of its strengths and weaknesses.

Errors are an important area of study across many fields. Historically, models about error assumed that people didn’t really make errors often. Those attitudes are alive and well in many fields and workplaces today. Instead of carefully considering errors, they are often dismissed as indicators of incompetence. However, some workplaces are changing the way they approach errors. I did some collaborative research on medical errors in 2012 and was introduced to the term HRO or High-Reliability Organization. This is an error focused model of management that assumes that errors will be made, and not all errors can be anticipated. Therefore, every error should be embraced as a learning opportunity to build a better organizational framework.

From time to time, various members of our working group have been driven to create checklists for particular aspects of our work. In my experience, the checklists are very helpful for work that we do infrequently and virtually useless for work that we do daily. Writing a checklist for your daily work is a bit like writing instructions on how you brush your teeth and expecting to keep those instructions updated whenever you make a change of sorts. Undoubtedly, you’ll reread the instructions and wonder when you switched from a vertical to a circular motion for a given tooth. And yet there are so many important elements to our work, and so many areas where people could make less than ideal decisions (small or large). From this need rose Deming, with the first survey quality checklist. After Deming, a few other models arose. Eventually, TSE became the cumulative working framework or foundational framework for the field of survey research.

In my last blog, I spoke about the strangeness of coming across a foundational framework after working in the field without one. The framework is a conceptually important one, separating out sources of errors in ways that make shortcomings and strengths apparent and clarifying what is more or less known about a project.

But in practice, this model has not become the applied working model that its founders and biggest proponents expected it to be. This is for two reasons (that I’ll focus on), one of which Groves mentioned in some detail in this paper and one of which he barely touched on (but likely drove him out of the field).

1. The framework has mathematical properties, and this has led to its more intensive use on aspects of the survey process that are traditionally quantitative. TSE research in areas of sampling, coverage, response and aspects of analysis is quite common, but TSE research in other areas is much less common. In fact, many of the less quantifiable parts of the survey process are almost dismissed in favor of the more quantifiable parts. A survey with a particularly low TSE value could have huge underlying problems or be of minimal use once complete.
2. The framework doesn’t explicitly consider the human factors that govern research behind the scenes. Groves mentioned that the end users of the data are not deeply considered in the model, but neither are the other financial and personal (and personafinancial) constraints that govern much decision making. Ideally, the end goal of research is high quality research that yields a useful and relevant response for as minimal cost as possible. In practice, however, the goal is both to keep costs low and to satisfy a system of interrelated (and often conflicting) personal or professional (personaprofessional?) interests. If the most influential of these interests are not particularly interested in (or appreciative of) the model, practitioners are highly unlikely to take the time to apply it.

Survey research requires very close attention to detail in order to minimize errors. It requires an intimate working knowledge of math and of computer programming. It also benefits from a knowledge of human behavior and the research environment. If I were to recommend any changes to the TSE model, I would recommend a bit more task based detail, to incorporate more of the highly valued working knowledge that is often inherent and unspoken in the training of new researchers. I would also recommend a more of an HRO orientation toward error, anticipating and embracing unexpected errors as a source of additions to the model. And I would recommend some deeper incorporation of the personal and financial constraints and the roles they play (clearly an easier change to introduce than to flesh out in any great detail!). I would recommend a shift of focus, away from the quantitative modeling aspects and to the overall applicability and importance of a detailed, applied working model.

I’ve suggested before that survey research does not have a strong enough public face for the general public to understand or deeply value our work. A model that is better embraced by the field could for the basis for a public face, but the model would have to appeal to practitioners on a practical level. The question is: how do you get members of a well established field who have long been working within it and gaining expertise to accept a framework that grew into a foundational piece independent of their work?


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s