Is there Interdisciplinary hope for Social Media Research?

I’ve been trying to wrap my head around social media research for a couple of years now. I don’t think it would be as hard to understand from any one academic or professional perspective, but, from an interdisciplinary standpoint, the variety of perspectives and the disconnects between them are stunning.

In the academic realm:

There is the computer science approach to social media research. From this standpoint, we see the fleshing out of machine learning algorithms in a stunning horserace of code development across a few programming languages. This is the most likely to be opaque, proprietary knowledge.

There is the NLP or linguistic approach, which overlaps to some degree with the cs approach, although it is often more closely tied to grammatical rules. In this case, we see grammatical parsers, dictionary development, and api’s or shared programming modules, such as NLTK or GATE. Linguistics is divided as a discipline, and many of these divisions have filtered into NLP.

Both the NLP and CS approaches can be fleshed out, trained, or used on just about any data set.

There are the discourse approaches. Discourse is an area of linguistics concerned with meaning above the level of the sentence. This type of research can follow more of a strict Conversation Analysis approach or a kind of Netnography approach. This school of thought is more concerned with context as a determiner or shaper of meaning than the two approaches above.

For these approaches, the dataset cannot just come from anywhere. The analyst should understand where the data came from.

One could divide these traditions by programming skills, but there are enough of us who do work on both sides that the distinction is superficial. Although, generally speaker, the deeper one’s programming or qualitative skills, the less likely one is to cross over to the other side.

There is also a growing tradition of data science, which is primarily quantitative. Although I have some statistical background and work with quantitative data sets every day, I don’t have a good understanding of data science as a discipline. I assume that the growing field of data visualization would fall into this camp.

In the professional realm:

There are many companies in horseraces to develop the best systems first. These companies use catchphrases like “big data” and “social media firehose” and often focus on sentiment analysis or topic analysis (usually topics are gleaned through keywords). These companies primarily market to the advertising industry and market researchers, often with inflated claims of accuracy, which are possible because of the opacity of their methods.

There is the realm of market research, which is quickly becoming dependent on fast, widely available knowledge. This knowledge is usually gleaned through companies involved in the horserace, without much awareness of the methodology. There is an increasing need for companies to be aware of their brand’s mentions and interactions online, in real time, and as they collect this information it is easy, convenient and cost effective to collect more information in the process, such as sentiment analyses and topic analyses. This field has created an astronomically high demand for big data analysis.

There is the traditional field of survey research. This field is methodical and error focused. Knowledge is created empirically and evaluated critically. Every aspect of the survey process is highly researched and understood in great depth, so new methods are greeted with a natural skepticism. Although they have traditionally been the anchors of good professional research methods and the leaders in the research field, survey researchers are largely outside of the big data rush. Survey researchers tend to value accuracy over timeliness, so the big, fast world of big data, with its dubious ability to create representative samples, hold little allure or relevance.

The wider picture

In the wider picture, we have discussions of access and use. We see a growing proportion of the population coming online on an ever greater variety of devices. On the surface, the digital divide is fast shrinking (albeit still significant). Some of the digital access debate has been expanded into an understanding of differential use- essentially that different people do different activities while online. I want to take this debate further by focusing on discursive access or the digital representation of language ideologies.

The problem

The problem with such a wide spread of methods, needs, focuses and analytic traditions is that there isn’t enough crossover. It is very difficult to find work that spreads across these domains. The audiences are different, the needs are different, the abilities are different, and the professional visions are dramatically different across traditions. Although many people are speaking, it seems like people are largely speaking within silos or echo chambers, and knowledge simply isn’t trickling across borders.

This problem has rapidly grown because the underlying professional industries have quickly calcified. Sentiment analysis is not the revolutionary answer to the text analysis problem, but it is good enough for now, and it is skyrocketing in use. Academia is moving too slow for the demands of industry and not addressing the needs of industry, so other analytic techniques are not being adopted.

Social media analysis would best be accomplished by a team of people, each with different training. But it is not developing that way. And that, I believe, is a big (and fast growing) problem.

What do all of these polling strategies add up to?

Yesterday was a big first for research methodologists across many disciplines. For some of the newer methods, it was the first election that they could be applied to in real time. For some of the older methods, this election was the first to bring competing methodologies, and not just methodological critiques.

Real time sentiment analysis from sites like this summarized Twitter’s take on the election. This paper sought to predict electoral turnout using google searches. InsideFacebook attempted to use Facebook data to track voting. And those are just a few of a rapid proliferation of data sources, analytic strategies and visualizations.

One could ask, who are the winners? Some (including me) were quick to declare a victory for the well honed craft of traditional pollsters, who showed that they were able to repeat their studies with little noise, and that their results were predictive of a wider real world phenomena. Some could call a victory for the emerging field of Data Science. Obama’s Chief Data Scientist is already beginning to be recognized. Comparisons of analytic strategies will spring up all over the place in the coming weeks. The election provided a rare opportunity where so many strategies and so many people were working in one topical area. The comparisons will tell us a lot about where we are in the data horse race.

In fact, most of these methods were successful predictors in spite of their complicated underpinnings. The google searches took into account searches for variations of “vote,” which worked as a kind of reliable predictor but belied the complicated web of naturalistic search terms (which I alluded to in an earlier post about the natural development of hashtags, as explained by Rami Khater of Al Jezeera’s The Stream, a social network generated newscast). I was a real-world example of this methodological complication. Before I went to vote, I googled “sample ballot.” Similar intent, but I wouldn’t have been caught in the analyst’s net.

If you look deeper at the Sentiment Analysis tools that allow you to view the specific tweets that comprise their categorizations, you will quickly see that, although the overall trends were in fact predictive of the election results, the data coding was messy, because language is messy.

And the victorious predictive ability of traditional polling methods belies the complicated nature of interviewing as a data collection technique. Survey methodologists work hard to standardize research interviews in order to maximize the reliability of the interviews. Sometimes these interviews are standardized to the point of recording. Sometimes the interviews are so scripted that interviewers are not allowed to clarify questions, only to repeat them. Critiques of this kind of standardization are common in survey methodology, most notably from Nora Cate Schaeffer, who has raised many important considerations within the survey methodology community while still strongly supporting the importance of interviewing as a methodological tool. My reading assignment for my ethnography class this week is a chapter by Charles Briggs from 1986 (Briggs – Learning how to ask) that proves that many of the new methodological critiques are in fact old methodological critiques. But the critiques are rarely heeded, because they are difficult to apply.

I am currently working on a project that demonstrates some of the problems with standardizing interviews. I am revising a script we used to call a representative sample of U.S. high schools. The script was last used four years ago in a highly successful effort that led to an admirable 98% response rate. But to my surprise, when I went to pull up the old script I found instead a system of scripts. What was an online and phone survey had spawned fax and e-mail versions. What was intended to be a survey of principals now had a set of potential respondents from the schools, each with their own strengths and weaknesses. Answers to common questions from school staff were loosely scripted on an addendum to the original script. A set of tips for phonecallers included points such as “make sure to catch the name of the person who transfers you, so that you can specifically say that Ms X from the office suggested I talk to you” and “If you get transferred to the teacher, make sure you are not talking to the whole class over the loudspeaker.”

Heidi Hamilton, chair of the Georgetown Linguistics department, often refers to conversation as “climbing a tree that climbs back.” In fact, we often talk about meaning as mutually constituted between all of the participants in a conversation. The conversation itself cannot be taken outside of the context in which it lives. The many documents I found from the phonecallers show just how relevant these observations can be in an applied research environment.

The big question that arises from all of this is one of a practical strategy. In particular, I had to figure out how to best address the interview campaign that we had actually run when preparing to rerun the campaign we had intended to run. My solution was to integrate the feedback from the phonecallers and loosen up the script. But I suspect that this tactic will work differently with different phonecallers. I’ve certainly worked with a variety of phonecallers, from those that preferred a script to those that preferred to talk off the cuff. Which makes the best phonecaller? Neither. Both. The ideal phonecaller works with the situation that is presented to them nimbly and professionally while collecting complete and relevant data from the most reliable source. As much of the time as possible.

At this point, I’ve come pretty far afield of my original point, which is that all of these competing predictive strategies have complicated underpinnings.

And what of that?

I believe that the best research is conscious of its strengths and weaknesses and not afraid to work with other strategies in order to generate the most comprehensive picture. As we see comparisons and horse races develop between analytic strategies, I think the best analyses we’ll see will be the ones that fit the results of each of the strategies together, simultaneously developing a fuller breakdown of the election and a fuller picture of our new research environment.

I think I’m using “big data” incorrectly

I think I’m using the term “big data” incorrectly. When I talk about big data, I’m referring to the massive amount of freely available information that researchers can collect from the internet. My expectation is that the researchers must choose which firehose best fits their research goals, collect and store the data, and groom it to the point of usability before using it to answer targeted questions or examining it for answers in need of a question.

The first element of this that makes it “big data” to me, is that the data is freely available and not subject to any privacy violations. It can be difficult to collect and store, because of its sheer size, but it is not password protected. For this reason, I would not consider Facebook to be a source for “big data.” I believe that the overwhelming majority of Facebook users impose some privacy controls, and the resulting, freely available information cannot be assigned any kind of validity. There are plenty of measures of inclusion for online research, and ignorance about privacy rules or shear exhibitionism are not a target qualities by any of these standards.

The second crucial element to my definition of “big data” is structure. My expectation is that it is in any researchers interest to understand the genesis and structure of their data as much as possible, both for the sake of grooming, and for the sake of assigning some sense of validity to their findings. Targeted information will be layed out and signaled very differently in different online environments, and the researcher must work to develop both working delimiters to find probable working targets and a sense of context for the data.

The third crucial element is representativeness. What do these findings represent? Under what conditions? “Big data” has a wide array of answers to these questions. First, it is crucial to note that it is not representative of the general population. It represents only the networked members of a population who were actively engaging with an online interface within the captured window of time in a way that left a trace or produced data. Because of this, we look at individual people by their networks, and not by their representativeness. Who did they influence, and to what degree could they influence those people? And we look at other units of analysis, such as the website that the people were contributing on, the connectedness of that website, and the words themselves, and their degree of influence, both directly an indirectly.

Given those elements of understanding, we are able to provide a framework from which the analysis of the data itself is meaningful and useful.

I’m aware that my definition is not the generally accepted definition. But for the time being I will continue to use it for two reasons:

1. Because I haven’t seen any other terms that better fit
2. Because I think that it is critically important that any talk about data use is tied to measures that encourage the researcher to think about the meaning and value of their data

It’s my hope that this is a continuing discussion. In the meantime, I will trudge on in idealistic ignorance.

Unlocking patterns in language

In linguistics study, we quickly learn that all language is patterned. Although the actual words we produce vary widely, the process of production does not. The process of constructing baby talk was found to be consistent across kids from 15 different languages. When any two people who do not speak overlapping languages come together and try to speak, the process is the same. When we look at any large body of data, we quickly learn that just about any linguistic phenomena is subject to statistical likelihood. Grammatical patterns govern the basic structure of what we see in the corpus. Variations in language use may tweak these patterns, but each variation is a patterned tweak with its own set of statistical likelihoods. Variations that people are quick to call bastardizations are actually patterned departures from what those people consider to be “standard” english. Understanding “differences not defecits” is a crucially important part of understanding and processing language, because any variation, even texting shorthand, “broken english,” or slang, can be better understood and used once its underlying structure is recognized.

The patterns in language extend beyond grammar to word usage. The most frequent words in a corpus are function words such as “a” and “the,” and the most frequent collocations are combinations like “and the” or “and then it.” These patterns govern the findings of a lot of investigations into textual data. A certain phrase may show up as a frequent member of a dataset simply because it is a common or lexicalized expression, and another combination may not appear because it is more rare- this could be particularly problematic, because what is rare is often more noticeable or important.

Here are some good starter questions to ask to better understand your textual data:

1) Where did this data come from? What was it’s original purpose and context?

2) What did the speakers intend to accomplish by producing this text?

3) What type of data or text, or genre, does this represent?

4) How was this data collected? Where is it from?

5) Who are the speakers? What is their relationship to eachother?

6) Is there any cohesion to the text?

7) What language is the text in? What is the linguistic background of the speakers?

8) Who is the intended audience?

9) What kind of repetition do you see in the text? What about repetition within the context of a conversation? What about repetition of outside elements?

10) What stands out as relatively unusual or rare within the body of text?

11) What is relatively common within the dataset?

12) What register is the text written in? Casual? Academic? Formal? Informal?

13) Pronoun use. Always look at pronoun use. It’s almost always enlightening.

These types of questions will take you much further into your dataset that the knee-jerk question “What is this text about?”

Now, go forth and research! …And be sure to report back!

Facebook Measures Happiness in Status Updates?

From Flowing data:

http://flowingdata.com/2009/10/05/facebook-measures-happiness-in-status-updates/

Does anyone have a link to the original report?

I really wish I had more of a window into the methodology of this one!

A couple of questions:

What is happiness?

How can it be measured or signaled? What kinds of data are representing happiness? Is this just an expanded or open ended sentiment analysis? Is the technology such that this would be a valid study?

Are Facebook statuses a sensible place to investigate happiness?

What is this study representing? Constituting? Perpetuating?

 

Edited to Add: http://blog.facebook.com/blog.php?post=150162112130