“Not everything that can be counted counts”

“Not everything that counts can be counted, and not everything that can be counted counts” – sign in Einstein’s Princeton office

This quote is from one of my favorite survey reminder postcards of all time, along with an image from from the Emilio Segre visual archives. The postcard layout was an easy and pleasant decision made in association with a straightforward survey we have conducted for nearly a quarter century. …If only social media analysis could be so easy, pleasant or straightforward!

I am in the process of conducting an ethnography of DC taxi drivers. I was motivated to do this study because of the persistent disconnect between the experiences and reports of the taxi drivers and riders I hear from regularly and the snarky (I know this term does not seem technical, but it is absolutely data motivated!) riders who dominate participatory media sources online. My goal at this point of the project is to chase down the disconnect in media participation and see how it maps to policy deliberations and offline experiences. This week I decided to explore ways of quantifying the disconnect.

Inspired by this article in jedem (the eJournal of eDemocracy and Open Government), I decided to start my search using framework based in Social Network Analysis (SNA), in order to use elements of connectedness, authority and relevance as a base. Fortunately, SNA frameworks are widely available to analysts on a budget in the form of web search engines! I went through the first 22 search results for a particular area of interest to my study: the mandatory GPS policy. Of these 22 sites, only 11 had active web 2.0 components. Across all of these sites, there were just two comments from drivers. Three of the sites that didn’t have any comments from drivers did have one post each that sympathized with or defended DC taxi drivers. The remaining three sites had no responses from taxi drivers and no sympathetic responses in defense of the drivers. Barring a couple of comments that were difficult to divine, the rest of the comments were negative comments about DC taxi drivers or the DC taxi industry. This matched my expectations, and, predictably, didn’t match any of my interviews or offline investigations.

The question at this point is one of denominator.

The easiest denominator to use, and, in fact, the least complicated was the number of sites. Using this denominator, only one quarter of the sites had any representation from a DC taxi driver. This is significant, given that the discussions were about aspects of their livelihood, and the drivers will be the most closely affected by the regulatory changes. This is a good, solid statistic from which to investigate the influence of web 2.0 on local policy enactment. However, it doesn’t begin to show the lack of representation the way that a denominator such as number of posts, number of posters, or number of opinions would have. But each one of these alternative denominators has its own set of headaches. Does it matter if one poster expresses an opinion once and another expresses another, slightly different opinion more than once? If everyone agrees, what should the denominator be? What about responses that contain links that are now defunct or insider references that aren’t meaningful to me? Should I consider measures of social capital, endorsements, social connectedness, or the backgrounds of individual posters?

The simplest figure also doesn’t show one of the most striking aspects of this finding; the relative markedness of these posts. In the context of predominantly short, snarky and clever responses, one of the comments began with a formal “Dear DC city councilmembers and intelligent  taxpayers,” and the other spread over three dense, winding posts in large paragraph form.

This brings up an important aspect of social media; that of social action. If every comment is a social action with social intentions, what are the intentions of the posters and how can these be identified? I don’t believe that the majority of posts left were intended as a voice in local politics, but the comments from the drivers clearly were. The majority of posts represent attempts to warrant social capital using humor, not attempts to have a voice in local politics. And they repeated phrases that are often repeated in web 2.0 discussions about the DC taxi situation, but rarely repeated elsewhere. This observation, of course, is pretty meaningless without being anchored to the data itself, both quantitatively and qualitatively. And it makes for some interesting ‘next steps’ in a project that is certainly not short of ‘next steps.’

The main point I want to make here is about the nature of variables in social media research. Compared to a survey, where you ask a question, determined in advance, and have a set of answers to work with in your analysis, you are free to choose your own variables for your analysis. Each choice brings with it a set of constraints and advantages, and some fit your data better than others. But the path to analysis can be a more difficult path to take, and more justification about the choices you make is important. To augment this, a quantitative analysis, which can sometimes have very arbitrary or less clear choices included in it, is best supplemented with a qualitative analysis that delves into the answers themselves and why they fit the coding structure you have imposed.

In all of this, I have quite a bit of work out ahead of me.

I think I’m using “big data” incorrectly

I think I’m using the term “big data” incorrectly. When I talk about big data, I’m referring to the massive amount of freely available information that researchers can collect from the internet. My expectation is that the researchers must choose which firehose best fits their research goals, collect and store the data, and groom it to the point of usability before using it to answer targeted questions or examining it for answers in need of a question.

The first element of this that makes it “big data” to me, is that the data is freely available and not subject to any privacy violations. It can be difficult to collect and store, because of its sheer size, but it is not password protected. For this reason, I would not consider Facebook to be a source for “big data.” I believe that the overwhelming majority of Facebook users impose some privacy controls, and the resulting, freely available information cannot be assigned any kind of validity. There are plenty of measures of inclusion for online research, and ignorance about privacy rules or shear exhibitionism are not a target qualities by any of these standards.

The second crucial element to my definition of “big data” is structure. My expectation is that it is in any researchers interest to understand the genesis and structure of their data as much as possible, both for the sake of grooming, and for the sake of assigning some sense of validity to their findings. Targeted information will be layed out and signaled very differently in different online environments, and the researcher must work to develop both working delimiters to find probable working targets and a sense of context for the data.

The third crucial element is representativeness. What do these findings represent? Under what conditions? “Big data” has a wide array of answers to these questions. First, it is crucial to note that it is not representative of the general population. It represents only the networked members of a population who were actively engaging with an online interface within the captured window of time in a way that left a trace or produced data. Because of this, we look at individual people by their networks, and not by their representativeness. Who did they influence, and to what degree could they influence those people? And we look at other units of analysis, such as the website that the people were contributing on, the connectedness of that website, and the words themselves, and their degree of influence, both directly an indirectly.

Given those elements of understanding, we are able to provide a framework from which the analysis of the data itself is meaningful and useful.

I’m aware that my definition is not the generally accepted definition. But for the time being I will continue to use it for two reasons:

1. Because I haven’t seen any other terms that better fit
2. Because I think that it is critically important that any talk about data use is tied to measures that encourage the researcher to think about the meaning and value of their data

It’s my hope that this is a continuing discussion. In the meantime, I will trudge on in idealistic ignorance.

Getting to know your data

On Friday, I had the honor of participating in a microanalysis video discussion group with Fred Erickson. As he was introducing the process to the new attendees, he said something that really caught my attention. He said that videos and field notes are not data until someone decides to use them for research.

As someone with a background in survey research, the question of ‘what is data?’ was never really on my radar before graduate school. Although it’s always been good practice to know where your data comes from and what it represents in order to glean any kind of validity from your work, data was unquestioningly that which you see in a spreadsheet or delimited file, with cases going down and variables going across. If information could be formed like this, it was data. If not, it would need some manipulation. I remember discussing this with Anna Trester a couple of years ago. She found it hard to understand this limited framework, because, for her, the world was a potential data source. I’ve learned more about her perspective in the last couple of years, working with elements that I never before would have characterized as data, including pictures, websites, video footage of interactions, and now fieldwork as a participant observer.

Dr Erickson’s observation speaks to some frustration I’ve had lately, trying to understand the nature of “big data” sets. I’ve seen quite a bit of people looking for data, any data, to analyze. I could see the usefulness of this for corpus linguists, who use large bodies of textual data to study language use. A corpus linguist is able to use large bodies of text to see how we use words, which is a systematically patterned phenomena that goes much deeper than a dictionary definition could. I could also see the usefulness of large datasets in training programs to recognize genre, a really critical element in automated text analysis.

But beyond that, it is deeply important to understand the situated nature of language. People don’t produce text for the sake of producing text. Each textual element represents an intentioned social action on the part of the writer, and social goals are accomplished differently in different settings. In order for studies of textual data to produce valid conclusions with social commentary, contextual elements are extremely important.

Which leads me to ask if these agnostic datasets are being used solely as academic exercises by programmers and corpus linguists or if our hunger for data has led us to take any large body of information and declare it to be useful data from which to excise valid conclusions? Worse, are people using cookie cutter programs to investigate agnostic data sets like this without considering the wider validity?

I urge anyone looking to create insight from textual data to carefully get to know their data.

The Bones of Solid Research?

What are the elements that make research “research” and not just “observation?” Where are the bones of the beast, and do all strategies share the same skeleton?

Last Thursday, in my Ethnography of Communication class, we spent the first half hour of class time taking field notes in the library coffee shop. Two parts of the experience struck me the hardest.

1.) I was exhausted. Class came at the end of a long, full work day, toward the end of a week that was full of back to school nights, work, homework and board meetings. I began my observation by ordering a (badly needed) coffee. My goal as I ordered was to see how few words I had to utter in order to complete the transaction. (In my defense, I am usually relatively talkative and friendly…) The experience of observing and speaking as little as possible reminded me of one of the coolest things I’d come across in my degree study: Charlotte Linde, SocioRocketScientist at NASA

2.) Charlotte Linde, SocioRocketScientist at NASA. Dr Linde had come to speak with the GU Linguistics department early in my tenure as a grad student. She mentioned that her thesis had been about the geography of communication- specifically: How did the layout of an (her?) apartment building help shape communication within it?

This idea had struck me, and stayed with me, but it didn’t really make sense until I began to study Ethnography of Communication. In the coffee shop, I structured my fieldnotes like a map and investigated it in terms of zones of activities. Then I investigated expectations and conventions of communication in each zone. As a follow-up to this activity, I’ll either return to the same shop or head to another coffee shop to do some contrastive mapping.

The process of Ethnography embodies the dynamic between quantitative and qualitative methods for me. When I read ethnographic research, I really find myself obsessing over ‘what makes this research?’ and ‘how is each statement justified?’ Survey methodology, which I am still doing every day at work, is so deeply structured that less structured research is, by contrast, a bit bewildering or shocking. Reading about qualitative methodology makes it seem so much more dependable and structured than reading ethnographic research papers does.

Much of the process of learning ethnography is learning yourself; your priorities, your organization, … learning why you notice what you do and evaluate it the way you do… Conversely, much of the process of reading ethnographic research seems to involve evaluation or skepticism of the researcher, the researcher’s perspective and the researcher’s interpretation. As a reader, the places where the researcher’s perspective varies from mine is clear and easy to see, as much as my own perspective is invisible to me.

All of this leads me back to the big questions I’m grappling with. Is this structured observational method the basis for all research? And how much structure does observation need to have in order to qualify as research?

I’d be interested to hear what you think of these issues!

Could our attitude toward marketing determine our field’s future?

In our office, we call it the “cocktail party question:” What do you do for a living? For those of us who work in the area of survey research, this can be a particularly difficult question to answer. Not only do people rarely know much about our work, but they rarely have a great deal of interest in it. I like to think of myself as a survey methodologist, but it is easier in social situations to discuss the focus of my research than my passion for methodology. I work at the American Institute of Physics, so I describe my work as “studying people who study physics.” Usually this description is greeted with an uncomfortable laugh, and the conversation progresses elsewhere. Score!

But the wider lack of understanding of survey research can have larger implications than simply awkward social situations. It can also cause tension with clients who don’t understand our work, our process, or where and how we add expertise to the process. Toward this end, I once wrote a guide for working with clients that separated out each stage in the survey process and detailed what expertise the researcher brings to the stage and what expertise we need from the client. I hoped that it would be a way of both separating and affirming the roles of client and researcher and advertising our firm and our field. I have not ye had the opportunity to use this piece, because of the nature of my current projects, but I’d be happy to share it with anyone who is interested in using or adapting it.

I think about that piece often as I see more talk about big data and social media analysis. Data seems to be everywhere and free, and I wonder what affect this buzz will have on a body of research consumers who might not have respected the role of the researchers from the get-go. We worried when Survey Monkey and other automated survey tools came along, but the current bevvy of tools and attitudes could have an exponentially larger impact on our practice.

Survey researchers often thumb their nose at advertising, despite the heavy methodological overlap. Oftentimes there is a knee-jerk reaction against marketing speak. Not only do survey methodologists often thumb their/our noses at the goal and importance of advertising, but they/we often thumb their/our nose at what appears to be evidence of less rigorous methodology. This has led us to a ridiculous point where data and analyses have evolved quickly with the demand and heavy use of advertising and market researchers and evolved strikingly little in more traditional survey areas, like polling and educational research. Much of the rhetoric about social media analysis, text analysis, social network analysis and big data is directed at the marketing and advertising crowd. Translating it to a wider research context and communicating it to a field that is often not eager to adapt to it can be difficult. And yet the exchange of ideas between the sister fields has never been more crucial to our mutual survival and relevance.

One of the goals of this blog has been to approach the changing landscape of research from a methodologically sound, interdisciplinary perspective that doesn’t suffer from the artificial walls and divisions. As I’ve worked on the blog, my own research methodology has evolved considerably. I’m relying more heavily on mixed methods and trying to use and integrate different tools into my work. I’ve learned quite a bit from researchers with a wide variety of backgrounds, and I often feel like I’m belted into a car with the windows down, hurtling down the highways of progress at top speed and trying to control the airflow. And then I often glimpse other survey researchers out the window, driving slowly, sensibly along the access road alongside the highway. I wonder if my mentors feel the change of landscape as viscerally as I do. I wonder how to carry forward the anchors and quality controls that led to such high quality research in the survey realm. I wonder about the future. And the present. About who’s driving, and who in what car is talking to who? Using what gps?

Mostly I wonder: could our negative attitude toward advertising and market research drive us right into obscurity? Are we too quick to misjudge the magnitude of the changes afoot?

 

This post is meant to be provocative, and I hope it inspires some good conversation.

Rethinking demographics in research

I read a blog post on the LoveStats blog today that referred to one of the most widely regarded critiques of social media research: the lack of demographic information.

In traditional survey research, demographic information is a critically important piece of the analysis. We often ask questions like “Yes 50% of the respondents said they had encountered gender harassment, but what is the breakdown by gender?” The prospect of not having this demographic information is a large enough game changer to cast the field of social media research into the shade.

Here I’d like to take a sidestep and borrow a debate from linguistics. In the linguistic subfield of conversation analysis, there are two main streams of thought about analysis. One believes in gathering as much outside data as possible, often through ethnographic research, to inform a detailed understanding of the conversation. The second stream is rooted in the purity of the data. This stream emphasizes our dynamic construction of identity over the stability of identity. The underlying foundation of this stream is that we continually construct and reconstruct the most important and relevant elements of our identity in the process of our interaction. Take, for example, a study of an interaction between a doctor and a patient. The first school would bring into the analysis a body of knowledge about interactions between doctors and patients. The second would believe that this body of knowledge is potentially irrelevant or even corrupting to the analysis, and if the relationship is in fact relevant it will be constructed within the excerpt of study. This begs the question: are all interactions between doctors and patients primarily doctor patient interactions? We could address this further through the concept of framing and embedded frames (a la Goffman), but we won’t do that right now.

Instead, I’ll ask another question:
If we are studying gender discrimination, is it necessary to have a variable for gender within our datasouce?

My kneejerk reaction to this question, because of my quantitative background, is yes. But looking deeper: is gender always relevant? This does strongly depend on the datasource, so let’s assume for this example that the stimulus was a question on a survey that was not directly about discrimination, but rather more general (e.g. “Additional Comments:”).

What if we took that second CA approach, the purist approach, and say that where gender is applicable to the response it will be constructed within that response. The question now becomes ‘how is gender constructed within a response?’ This is a beautiful and interesting question for a linguist, and it may be a question that much better fits the underlying data and provides deeper insight into the data. It also turns the age old analytic strategy on its head. Now we can ask whether a priori assumptions that the demographics could or do matter are just rote research or truly the productive and informative measures that we’ve built them up to be?

I believe that this is a key difference between analysis types. In the qualitative analysis of open ended survey questions, it isn’t very meaningful to say x% of the respondents mentioned z, and y% of the respondents mentioned d, because a nonmention of z or d is not really meaningful. Instead we go deeper into the data to see what was said about d or z. So the goal is not prevalence, but description. On the other hand, prevalence is a hugely important aspect of quantitative analysis, as are other fun statistics which feed off of demographic variables.

The lesson in all of this is to think carefully about what is meaningful information that is relevant to your analysis and not to make assumptions across analytic strategies.

Do you ever think about interfaces? Because I do. All the time.

Did you ever see the movie Singles? It came out in the early 90s, shortly before the alternative scene really blew up and I dyed [part of] my hair blue and thought seriously about piercings. Singles was a part of the growth of the alternative movement. In the movie, there is a moment when one character says to another “Do you ever think about traffic? Because I do. All the time.” I spent quite a bit of time obsessing over that line, about what it meant, and, more deeply, what it signaled.

I still think about that line. As I drove toward the turnoff to my mom’s street during our 4th of July vacation, I saw what looked like the turn lane for her street, but it was actually an intersection- less left- turning split immediately preceding the real left turn lane for her street. It threw me off every time, and I kept remembering that romantic moment in Singles when the two characters were getting to know each other’s quirks, and the man was talking about traffic. And it was okay, even cool, to be quirky and think or talk about traffic, even during a romantic moment.

I don’t think about traffic often. But I am no less quirky. Lately, I tend to think about interfaces. Before my first brush with NLP (Natural Language Processing), I thought quite a bit about alternatives to e-mail. Since I discovered the world of text analytics, I have been thinking quite a bit about ways to integrate the knowledge across different fields about methods for text analysis and the needs of quantitative and qualitative researchers. I want to think outside of the sentiment box, because I believe that sentiment analysis does not fully address the underlying richness of textual data. I want to find a way to give researchers what they need, not what they think they want. Recently, my thinking on this topic has flipped. Instead of thinking from the data end, or the analytic possibilities end, or about what programs already exist and what they do, I have started to think about interfaces. This feels like a real epiphany. Once we think about the problem from an interface, or user experience perspective, we can better utilize existing technology and harness user expectations.

Have you read the new Imagine book about how creativity works? I believe that this strategy is the natural step after spending time zoning out on the web, thinking, or not thinking, about research. The more time you cruise, the better feel you develop for what works and what doesn’t, the more you learn what to expect. Interfaces are simply the masks we put on datasets of all sorts. The data could be the world wide web as a whole, results from a site or time period, a database of merchandise, or even a set of open ended survey responses. The goal is to streamline the searching interface and then make it available for use on any number of datasets. We use NLP every day when we search the internet, or shop. We understand it intuitively. Why don’t we extend that understanding to text analysis?

I find myself thinking about what this interface should look like and what I want this program to do.

Not traffic, not as romantic. But still quirky and all-encompassing.

To go big, first think small

We use language all of the time. Because of this, we are all experts in language use. As native speakers of a language, we are experts in the intricacies of that language.

Why, then, do people study linguistics? Aren’t we all linguists?

Absolutely not.

We are experts in *using* language, but we are not experts in the methods we employ. Believe it or not, much of the process of speaking and hearing is not conscious. If it was, we would be sensorally overwhelmed with the sheer volume of words around us. Instead, listening comprehension involves a process of merging what we expect to hear with what we gauge to be the most important elements of what we do hear. The process of speaking involves merging our estimates of what the people we communicate with know and expect to hear with our understanding of the social expectations surrounding our words and our relationships and distilling these sources into a workable expression. The hearer will reconstruct elements of this process using cues that are sometimes conscious and sometimes not.

We often think of language as simple and mechanistic, but it is not simple at all. As conversational analysts, our job is to study conversation that we have access to in an attempt to reconstruct the elements that constituted the interaction. Even small chunks of conversation encode quite a bit of information.

The process of conversation analysis is very much contrary to our sense of language as regular language users. This makes the process of explaining our research to people outside our field difficult. It is difficult to justify the research, and it is difficult to explain why such small pieces of data can be so useful, when most other fields of research rely on greater volumes of data.

In fact, a greater volume of data can be more harmful than helpful in conversation analysis. Conversation is heavily dependent on its context; on the people conversing, their relationship, their expectations, their experiences that day, the things on their mind, what they expect from each other and the situation, their understanding of language and expectations, and more. The same sentence can have greatly different meanings once those factors are taken into account.

At a time when there is so much talk of the glory of big data, it is especially important to keep in mind the contributions of small data. These contributions are the ones that jeopardize the utility and promise of big data, and if these contributions can be captured in creative ways, they will be the true promise of the field.

Not what language users expect to see, but rather what we use every day, more or less consciously.

Memory is incomplete experience

Today’s quote on my zen calendar is perfect.

“Memory is incomplete experience.” J. Krishnamurti

This is a great reminder for researchers and for people in general, because we all forget and keep forgetting how incomplete our memories and the memories of people we come into contact are. How many survey questions could be better written with this advice? How much better is ethnography when we base our observations on repeated viewings, rather than trying to reconstruct a vague memory? How many arguments could be avoided, if we could just remember that memories are incomplete?

I sometimes participate in a video discussion group. I am amazed that each viewing of a short segment of video brings a different set of interpretations, and I am amazed that the other participants continually notice different aspects of the video. This experience really drives the point home about how little we see in our everyday lives. We are so inundated with information that we simply couldn’t, and wouldn’t want to, process it all.

Research is the process of recovering and reconstructing. Of observing carefully. Of noticing things that we would never or could never have accessed through normal observation and we absolutely could never access through our memories. Being a researcher does not make us any more able to analyze that which we experience in a single pass- we’re still human. Being a researcher simply means that we have the capacity to observe and investigate things more closely.

Academic register: Are we smarter than a 5th grader?

Another important area of study in Linguistics is register. Among other things, register refers to the degree of formality with which we communicate. We speak differently with our friends and family than we do at work. We speak differently in a courtroom than in a courtroom lobby. And we speak differently in academia than we do elsewhere.

In an interview about Betty Friedan’s ‘The Feminine Mystique,’ Naomi Wolf discusses the groundbreaking impact of Friedan’s classic work. She praises Friedan for having the courage to release countless hours of research to a wider audience, rather than an academic audience. To do this, Friedan sacrificed the academic recognition that could have accompanied her work in order to reach a broader population who could potentially benefit from her work. The choice to write in a less respected register opened Friedan to criticism from academics, but led to a broad, longstanding appeal.

Wolf takes this point a step further by suggesting that academics write in such a way that we don’t even understand each other (!!).

This was a surprising admission to see from an academic. Academics often really embrace the large words and complicated nature of their findings. They manage to encode large amounts of information and complicated ideas in relatively small amounts of space. But are the conclusions and information that we publish limited in their usefulness by the academic register itself?

I’ve mentioned before that Linguistics is a very broad area of study. Coming to the field with absolutely no prior background, I was really struck by the different definitions of terms I used regularly in my profession, like reliability, validity, sampling, representative sample, … It took a while for me to adjust to the different context of those terms, and to the different lexicon and areas of focus in linguistics. And the more areas of linguistics I study, the more I find words and concepts from fields I have little experience with. I remember reading and rereading papers in my conversation analysis class, trying to understand what they were doing and why- and it took the whole semester for me to be able to imitate that academic genre and understand its power.

Clearly, the more experience we have with specific words and methods, the more easily we can understand a specific genre of academic writing. This is the academic genre at its best, and it enables us to reach complicated conclusions that we might not be able to make otherwise. But it is also quite restrictive. Nobody can be an expert in all fields, and research could potentially benefit from feedback from a much wider variety of fields than it often receives. This enforces a linguistic segregation represents is the academic genre at its worst.

Yesterday I attended a talk that involved areas and methods of study that I had never encountered before. I heard a talk about textual features that evoke emotion. The talk was heady, showing logical expressions and cognitive space diagrams, and involving some of what I believe is called semantic formalism. The text examples were mostly poems, which naturally add to the complexity of the analysis. The main points were that the use of complexity and negation in text add to the emotional wallop of a body of text. He used hypotheticals as an example of constructed negation that evokes emotion. After trying and trying to wrap my head around his points and their wider applicability, I thought of funerals and memorial services. I thought of how we use hypotheticals to make us cry and help the grieving process. I mentioned to the speaker that, as difficult as it is to wrap my head around his talk, I realized that we use these devices as tools to evoke emotion regularly in those situations.

In my mind, research is of the best quality when it is anchored in something palpable or readily accessible. As a poet, I have a distinct sense of trying to create contrasts and develop layers of complication as poetic devices. But that sense isn’t as visceral or accessible as grieving communication is.

I wonder what his research would have gained by borrowing from other registers. In my own research, I believe that explaining my work to my family or friends is a critical part of my research process. It helps me to make grounded conclusions, and it guides my research questions and methods. For yesterday’s speaker, surely it would help him to generate better, more wide ranging feedback from a wider variety of people?

At the end of the day, I went out for dinner with my kids. I mentioned the talk to my 10 year old, who loves to discuss emotions. I was surprised to see that not only did she ‘get it’ in one or two sentences of explanation, but she was able to generate some really excellent examples of these devices in a 5th grade register.